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ABSTRACT

An idealized supercell simulation using the Regional Atmospheric Modeling System (RAMS) produced
an elongated low-level mesocyclone that subsequently collapsed into a concentrated vortex. Though vor-
ticity continually increased in the mesocyclone due to horizontal convergence, the collapse phase was
additionally characterized by rapidly decreasing pressure, closed streamlines, and the creation of a compact
vorticity center isolated from the remaining vorticity. It was shown in Part I of this study that the concen-
tration phase was not initiated by an increase in horizontal convergence, suggesting that the proximate cause
resided elsewhere.

In this study, the vortex concentration in Part I is examined from a vorticity dynamics perspective. It is
shown that concentration occurs when inward radial velocity and vertical vorticity become more spatially
correlated in the region surrounding the nascent vortex. It is also emphasized that the anisotropy of the
horizontal convergence, which is nearly plane-convergent and of comparable magnitude to the mesocy-
clonic vorticity, is critical to an understanding of the process. The resultant evolution is intermediate
between a state of purely two-dimensional nondivergent dynamics and one in which plane convergence
confines vorticity to its axis of dilatation. This intermediate state produces a concentrated vortex more
rapidly than either end state. The unsteady nature of the initial vorticity band also serves to increase the
circulation and wind speed amplification of the final vortex. It is shown how conceptual models in the fluid
dynamics literature can be applied to predicting the time and length scales of tornadic mesocyclone evo-
lution.

1. Introduction

In Gaudet and Cotton (2006, hereafter Part I), an
idealized simulation of a supercell was performed. The
supercell developed a zone of low-level vorticity along
its gust front, in a manner similar to that of other mod-
eled supercells in the literature (Klemp and Rotunno
1983; Rotunno and Klemp 1985; Davies-Jones and
Brooks 1993; Adlerman et al. 1999, etc.). After approxi-
mately 3300 s, the maximum vorticity undergoes sub-
stantial amplification, and changes from being ex-
tended in the north–south direction (Fig. 1) to a local-

ized vortex with closed streamlines 5 min later (Fig. 2).
Even more significantly, the pressure field changes
from being a local maximum along the vorticity band
(Fig. 3) to an intense pressure deficit (Fig. 4). It was
shown in Part I that the pressure decrease can be ex-
plained as a consequence of the vorticity geometry; in
the incompressible elliptic pressure equation, vorticity
is associated with low pressure and deformation with
high pressure. In Fig. 1 deformation and vorticity are
comparable in magnitude, while in Fig. 2 deformation is
largely absent from the vortex core. In a simulation of
a hurricane-like ring vortex, Kossin and Schubert
(2001) also found a strong pressure decrease associated
with the concentration of vorticity. Since theirs was a
barotropic model, the pressure decrease occurred in the
absence of any vertical forcing or horizontal conver-
gence.
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In this paper the formation of the Regional Atmo-
spheric Modeling System (RAMS) vortex will be ex-
amined from a vorticity dynamics framework. Unlike
the ring vortex simulation in Kossin and Schubert
(2001), convergence around the supercell in the simu-
lation is of comparable magnitude to the vertical com-
ponent of vorticity. Nonetheless we will find that the
two-dimensional kinematics of the interaction of a vor-
ticity band with a large-scale strain, such as that asso-
ciated with the gust front, can help describe the rear-
rangement of vorticity into a concentrated vortex. We
will develop a framework of the vorticity evolution con-
sistent with both a Fourier decomposition of the circu-
lation equation applied to the numerical simulation,
and with the analytical models of strained turbulence
evolution developed by Neu (1984a,b, hereafter N84a
and N84b ) and Lin and Corcos (1984, hereafter LC84).
We will find that these models and the classical baro-
tropic instability model operate similarly, except that
the sources and geometry of the strain are different.
The actual evolution of the RAMS vortex appears to be
an intermediate state between one of purely unstrained
vorticity dynamics and one in which an external irrota-
tional strain is dominant.

2. Background

a. Vorticity and circulation

The vertical component of the vorticity, �z, will
henceforth be referred to as the vertical vorticity for
brevity. For a Boussinesq, inviscid fluid, the local
vertical vorticity tendency equation can be expressed
as (Haynes and McIntyre 1987; Weisman and Davis
1998)

��z

�t
� ��H · ��zvH � �w

�vH

�z
� k̂��, �1�

where k̂ is the vertical unit vector, and subscript H
denotes the horizontal. The first term on the right-hand
side of (1) combines the effects of the horizontal ad-
vection of vertical vorticity and the “stretching” term in
the vertical vorticity equation; the second term includes
vertical advection of vertical vorticity and the “tilting”
term. The two terms will henceforth be referred to as
the H and V terms, respectively. While the V term was
needed to explain the initial generation of vertical vor-
ticity near the surface by the supercell in Part I, it was
argued that the concentration of vorticity to form the
vortex in that study was dependent on the terms that
compose H.

Consider any horizontal closed curve C that is fixed
in a reference frame. The circulation tendency for C can
be found by integrating (1) about an open surface

FIG. 1. Potential temperature and vertical vorticity for grid 2 at
3300 s and 19 m above the surface. Potential temperature is rep-
resented by thin contours in 1-K increments; vertical vorticity is
represented by thick contours at 0.01 and 0.02 s�1, and every 0.04
s�1 thereafter. Shading represents rain mixing ratio � 2 g kg�1.
Maximum vertical vorticity is 0.046 s�1.

FIG. 2. Same as in Fig. 2, but at 3600 s.
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bounded by the curve. After the use of Stokes’ theo-
rem, it is readily shown that

��

�t
� �

C

��zvH � k̂ � w
�vH

�z � · dl. �2�

Thus in our framework the circulation tendency for any
region containing and moving with a storm feature can
be expressed as a line integral about the boundary of
the region.

For the case of a circular contour, it is useful and
convenient to employ a cylindrical coordinate system
(r, 	, z), whose origin is the center of the contour. The
circulation tendency equation in this case then becomes

��

�t
� �

C

��zvH � k̂ � w
�vH

�z � · dl

� r�
0

2� �� �r�z

H

� w
���

�z

V � d�, �3�

where 
r and 
	 are the radial and tangential velocity
components, respectively.

b. Fourier mode analysis

To analyze the intensification of circulation in the
RAMS model, a Fourier decomposition in terms of the

azimuthal angle 	 about a circular stationary contour
will be used. Consider the horizontal advection/
stretching term H in (3). Both of the elements 
r(	) and
�z(	) in the integral can be expressed as the following
series:

�r � �r 0 � �r1s sin� � �r1c cos� � �r2s sin2�

� �r2c cos2� � · · ·

�z � �z0 � �zr1s sin� � �zr1c cos� � �zr2s sin2�

� �zr2c cos2� � · · ·. �4�

When one substitutes the Fourier representations of (4)
into (3), only the products of the same trigonometric
functions survive the integral. One thus obtains

�r�
0

2�

�r�z d� � �r�2��r 0�z0 � ��r1s�z1s � ��r1c�z1c

� ��r2s�z2s � ��r2c�z2c � · · ·�. �5�

The zeroth-order term in (5) is the axisymmetric con-
tribution to H in the circulation equation. In the ab-
sence of singularities in the velocity field, it is only non-
zero when there is both a nonzero average divergence
and average vertical vorticity within the contour. It can
be considered to be the “average stretching” for the
contour and is zero for a nondivergent model. The
higher-order terms contribute to increasing circulation

FIG. 3. Perturbation pressure and vortex-relative velocity vec-
tors for grid 2 at 3300 and 19 m above the surface. Contours of
perturbation pressure have an increment of 0.5 mb. Magnitude of
reference vector has units of m s�1.

FIG. 4. Same as in Fig. 3, but at 3600 s. Minimum perturbation
pressure in vortex is �19 mb.
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when there is a positive correlation between inward
radial velocity and vertical vorticity around the con-
tour, and appear in both divergent and nondivergent
models. It should be noted that subtracting a constant
velocity from the wind field will alter the first-order
radial velocity modes and hence the first-order H terms
but will leave the other modes unaffected.

c. Vortex sheets and layers

The narrow band of vertical vorticity found along a
near discontinuity, such as a gust front, can be approxi-
mated as a vortex sheet, with infinite vorticity along the
boundary, zero vorticity elsewhere, and a finite nonzero
circulation per unit length along the boundary (denoted
by �), which is simply the total tangential wind differ-
ence across the boundary.

Now consider the case of a narrow vertical vorticity
band oriented along the axis of dilatation, which we
take to be the y axis, for a large-scale irrotational ve-
locity field with uniform convergence and deformation.
The irrotational velocity field is given by U � ��xx̂ �

yŷ, with � � 
. When � � 0 and 
 � 0, the flow is said
to be one of axial strain; for � � 0 but 
 � 0, the flow
is said to possess biaxial strain; the case of � � 0 and

 � 0 is uniform plane convergence (Moffat et al. 1994).
For an axisymmetric convergent flow, � � 
.

For the case of uniform plane convergence and �z

having no y or z dependence, the vertical vorticity
equation has an exact steady-state solution if a diffusion
term is added to balance the convergence of vorticity. If
the diffusion term is ��2�z/�x2 for a constant viscosity �,
then the solution is

�z � �z0 exp���x2

2�
�. �6�

This is the Burgers vortex layer (Burgers 1948). The
vorticity follows a Gaussian distribution in x with a
maximum on the y axis and an e-folding distance in x of
(2�/�)1/2. Integrating over all x reveals that the sheet
has a circulation per unit y-direction length of

	 � �2��

� �1
2

�z0. �7�

The axisymmetric version of the Burgers vortex layer is
well known as the Burgers vortex, whose vertical vor-
ticity obeys

�z � �z0 exp���r2

4�
�. �8�

For the Burgers vortex layer, allowing � to approach
zero while � and � remain constant represents the in-
viscid limit of the stretched vortex sheet. In this limit

the vertical vorticity as a function of x approaches a
delta function, whereas the value of � is kept constant.

3. Idealized strain framework

We again assume we have a uniform large-scale ir-
rotational velocity and a band of vertical vorticity, with
the band and the large-scale axis of dilatation both ori-
ented along the y axis. We assume that the vorticity is
given by �z(|x|), with no variation along and reflective
symmetry about the y axis. The total velocity may be
decomposed into the large-scale irrotational flow, U,
and a localized vortical flow, u. For a polar coordinate
system, 	 � 0 on the positive x axis, the radial velocity
component is given by

�r � �
r�� � ��

2
�

r�� � ��

2
cos2� � ur2s sin2�

� O�sin4��· · ·, �9�

where ur is the radial vortical velocity component
(henceforth simply radial vortical velocity). The defor-
mation in general is given by the magnitude of the sec-
ond-order radial velocity modes (e.g., Dutton 1986).
The term r(� � 
)/2 is the large-scale deformation and
ur2s is the vortical deformation. Because of the rota-
tional symmetry of the velocity field, and because ur �
0 at 	 � 0, there are only even sine terms in ur, and only
zeroth and even cosine terms in �z.

If we assume that �z has a maximum along the y axis,
we would expect the zeroth-order �z0 coefficient to be
positive but the second-order �z2c coefficient to be
negative. The expectation becomes necessary in the ab-
sence of higher-order modes. With only modes up to
second order, the function �z(	) is determined by its
value at four equally spaced angles (Fig. 5). The com-
bination of a positive zeroth-order mode and a second-
order cosine mode equal in magnitude but opposite in
sign produces a net positive function along the y axis,
and a neutral field on either side along the x axis.

Applying (5) to a circular stationary contour cen-
tered on the y axis, we obtain

H � �r�2��r0�z0 � ��r2c�z2c�

� �r2��� � ���z0 �
�� � ��

2
�z2c�. �10�

We see that the zeroth-order term in H is positive, but
the second-order term is negative. Unless the flow is
strongly biaxial, the zeroth-order term should prevail,
making the circulation tendency positive (but in reality
dissipative processes will tend to add negative tenden-
cies).
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Now assume that the vorticity within the circular con-
tour is rotated a small angle �� relative to all surround-
ing deformational fields, which we assume remain fixed
in magnitude and orientation. We rotate the coordinate
system with the vorticity inside the circular contour.
The new 
r modes are found by replacing 	 with 	 �
��. The change in the horizontal circulation tendency
term H due to rotation is

�H � �r�z2c�r�� � ��

2
�1 � cos�2�
�� � ur2s sin�2�
��.

�11�

For very small ��, sin(2��) � 2�� � 1 � cos(2��) �
(��)2/2. Thus the response of the band to small rota-
tions is controlled by the vortical flow, and the large-
scale irrotational deformation is secondary. Unstrained
vorticity dynamics can therefore be used as an approxi-
mation. For larger ��, however, the existence of large-
scale irrotational deformation can be important to in-
creasing the circulation tendency. Not only does a
larger �� increase the relative weighting of the irrota-
tional term in (11), but a significant �� implies that the
idealized one-dimensional vorticity configuration is be-
ing disrupted, the result of which is usually the isolation
of vorticity segments and a decrease in ur2s. Since the
vorticity segment is initially oppositely correlated to in-
ward radial velocity, the irrotational contribution to H

will monotonically increase (i.e., become less negative)
with the rotation angle (Fig. 6).

4. Fourier mode evolution in RAMS

The numerical model used for this simulation is
RAMS, described in depth in Cotton et al. (2003). The

FIG. 5. Schematic showing superposition of positive zeroth-order vertical vorticity mode and negative second-
order cosine vertical vorticity mode. Open circles denote where each mode or combination of modes is positive
along a fixed circular contour; filled circles denote where each mode or combination of modes is negative.

FIG. 6. Schematic showing elliptical vorticity patch in large-scale
irrotational straining field. Bold solid arrows denote contributions
to resultant velocity in vorticity patch (dashed arrow). Based on
schematic from Neu (1984a).
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initial state was horizontally homogeneous, using an
unstable sounding based on that in Grasso (2000). Su-
percellular convection was initiated using a warm
bubble. The horizontal grid spacing was 333 and 111 m
for grids 1 and 2, respectively, and the vertical grid
spacing decreased to a minimum of 40 m at the surface.
For other details the reader is referred to Part I.

Various Fourier contributions to the circulation forc-
ing H were found in the simulation about a circular
contour of radius 666 m centered on the location of the
maximum circulation in the second grid domain. The
results are shown in Table 1 at 3300 and 3360 s. These
times represent, respectively, the fine-grid initialization
and the peak of the intensification process; by 3420 s, a
low-level concentrated pseudocircular vortex is estab-
lished.

We see that the vector (
r1c, 
r1s) is consistent with
the general southeastward movement of the circulation
with respect to the model grid. It therefore largely rep-
resents the net translational motion of the vortex rela-
tive to the grid, and hence of the stationary contour.
Though a portion of the first-order mode can be Ga-
lilean-invariant (e.g., Smith and Montgomery 1995), we
will not further examine this mode here.

Among the other vorticity modes at 3300 s, the ze-
roth-order and second-order cosine are dominant, with
the zeroth-order term strongly positive and the second-
order cosine strongly negative. This suggests that the
vorticity band is nearly aligned with the model y axis. In
general, the total magnitude of the second-order mode
of a quantity c is given by (c2

2 s � c2
2c)

1/2, while the an-
gular rotation of its maximum positive value from the x
axis is given by

�m � 0.5 tan�1�c2s

c2c
�. �12�

Using the tabulated data, it can be determined that
from 3300 to 3360 s the vorticity band rotates from an
orientation of �76.5° to �58.1° with respect to the grid
x axis. A time-continuous view of the angular orienta-
tions of the second-order vorticity mode is shown in
Fig. 7. (Note that this plot is at the location of the
maximum vertical vorticity near the surface at each
time.) The vorticity band gradually rotates counter-
clockwise until about 3420 s, at which point the angular
rotation rate increases rapidly. The vorticity mode ori-
entation eventually stabilizes, but at this time the mag-
nitude of the second-order modes for both the vorticity
and radial velocity have decreased substantially (Fig.
8). This latter behavior is consistent with the decrease
in two-dimensional deformation that accompanies the
formation of the pressure deficit, as described in Part I
of this study.

At each time we can perform a rotation of the coor-

TABLE 1. Fourier modes of radial velocity, vertical vorticity, and
contributions to the circulation tendency for a stationary circle of
radius 666 m on grid 2. Only modes to fourth order are shown.
Values are shown at 60-s increments.

3300 s 3360 s

�8.40 �8.22 
r0

0.0112 0.0115 �z0

394 396 �2�r
r0�z0

11.7 14.7 
r1c

�0.0017 0.0060 �z1c

42 �185 ��r
r1c�z1c

�10.4 �12.9 
r1s

�0.0006 0.0007 �z1s

�13 19 ��r
r1s�z1s

�7.26 �7.58 
r2c

�0.0161 �0.0069 �z2c

�244 �110 ��r
r2c�z2c

3.49 2.03 
r2s

�0.0082 �0.0140 �z2s

60 60 ��r
r2s�z2s

0.162 �3.39 
r3c

0.0070 �0.0006 �z3c

�2 �4 ��r
r3c�z3c

�0.774 �0.250 
r3s

0.0049 �0.0088 �z3s

8 �5 ��r
r3s�z3s

0.945 �2.50 
r4c

0.0008 �0.0088 �z4c

�2 �46 ��r
r4c�z4c

�0.232 0.727 
r4s

0.0017 �0.0156 �z4s

1 24 ��r
r4s�z4s

FIG. 7. Orientation angle for positive maximum of vertical vor-
ticity second-order mode with respect to the model y axis. Results
are for a circular contour with 666-m radius centered at the loca-
tion of maximum vertical vorticity on grid 2. Angle has indeter-
minacy of �180°.
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dinate axes such that the y axis lies along the maximum
positive value of the second-order vorticity mode, as in
Fig. 5. Table 2 shows the various modes with respect to
the rotated coordinate system. As in the idealized
framework above, the most important H contribution
(neglecting first-order terms) is the positive zeroth-
order term, followed by the negative second-order
term. At 3360 s, the zeroth-order modes are virtually
unchanged from their values at 3300 s, showing that
zeroth-order vorticity convergence is not changing.

However, the second-order cosine contribution has be-
come significantly less negative.

Using Table 2, we can determine that the average
convergence for the stationary contour � � 
 � �2
r 0/r
� 2.52 � 10�2 s�1 at 3300 s. If we assume that the
vorticity band is nearly aligned with the irrotational axis
of dilatation, then the irrotational deformational veloc-
ity is simply Ur2c � 
r2c � 4.88 m s�1, while the vortical
deformational velocity is ur2s � 
r2s � 6.41 m s�1. We
find that the vortical deformation is larger at this time.
We also can set � � 
 � �2Ur2c/r � 1.47 � 10�2 s�1.
Thus � � 2.00 � 10�2 s�1 and 
 � 5.25 � 10�3 s�1,
showing that if the vorticity band is along the irrota-
tional dilatation axis, then the irrotational flow is ap-
proximately, though not exactly, plane convergent.

We note from the initialization of grid 2 (Fig. 1) that
the region of vorticity concentrating into the final vor-
tex has a width of approximately 600 m and a charac-
teristic vorticity value of about 0.03 s�1, suggesting that
the maximum circulation density is 18 m s�1. A uniform
distribution of vorticity maintaining � � 18 m s�1

throughout the region �r � x � r would produce ur2s �
�/4. The other limiting case, an infinitesimal vorticity
strip along the y axis, would produce ur2s � 4�/3�. We
see that the estimated ur2s lies between these two esti-
mates, as expected.

Let us assume that the magnitude and grid-relative
orientation of the irrotational deformation at 3300 and
3360 s are the same. Because the band and thus the
coordinate system have rotated 18.4°, the irrotational
velocity modes Ur2c and Ur2s have changed to �3.90
and 2.92 m s�1, respectively. Assuming that the vortical
contributions are the remainders from Table 2, we ob-
tain ur2c � 2.38 and ur2s � 4.78 m s�1. These admittedly
rough estimates do indicate that from 3300 to 3360 s the
change in ur2c (�2.38 m s�1) is greater than the change
in Ur2c (�0.98 m s�1) over this time period, but the total
magnitude of the second-order vortical mode is de-
creasing (to 5.34 m s�1), such that irrotational and vor-
tical deformation are of approximately equal magni-
tude. Hence, soon the evolution will deviate signifi-
cantly from that of purely unstrained two-dimensional
flow, and the irrotational strain will become important.

We therefore argue that the vortex concentration
process is quasi-two-dimensional. It is obviously not
purely two-dimensional because the zeroth-order term
is the largest one in the inviscid circulation budget.
However, before vortex concentration occurs, the evo-
lution is not toward an axisymmetric vortex, but a one-
dimensional vorticity band, because the convergence is
anisotropic. Circulation increases, but so does large-
scale shearing deformation; as discussed in Part I, the
former needs to predominate in order to create a local

FIG. 8. Magnitude of the second-order modes for inward radial
velocity, �
r, and vertical vorticity, �z. Results are for a circular
contour with 666-m radius centered at the location of maximum
vertical vorticity on grid 2.

TABLE 2. Same as in Table 1, but for rotated coordinate system
such that �2s � 0. Only modes to second order are shown.

3300 s 3360 s

�8.40 �8.22 
r0

0.0112 0.0115 �z0

394 396 �2�r
r0�z0

11.7 14.7 
r1c

�0.0017 0.0060 �z1c

42 �185 ��r
r1c�z1c

�10.4 �12.9 
r1s

�0.0006 0.0007 �z1s

�13 19 ��r
r1s�z1s

�4.88 �1.52 
r2c

�0.0181 �0.0156 �z2c

�185 �50 ��r
r2c�z2c

6.41 7.70 
r2s

0.0 0.0 �z2s

0.0 0.0 ��r
r2s�z2s
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minimum in pressure (unless the horizontal solenoid
term is important). When a constant diffusion coeffi-
cient is present, it can be shown that any localized vor-
ticity patch in plane-convergent flow tends to approach
the Burgers vortex layer with time (Kambe 1983;
Beronov 1997), with a local pressure maximum along
the vorticity maximum. However, as will be described,
the Burgers vortex layer is susceptible to an instability
whose end state is a circular vortex with a pressure
deficit; this process can and has been described using
only horizontal motion (as is the case for a Burgers
vortex layer near z � 0).

It is true that the flow, though largely plane-
convergent, has an axial component (
 � 0). Therefore,
if this flow and the vorticity band orientation were to
remain constant, the vorticity band, after first contract-
ing to a narrow one-dimensional strip, would eventually
converge toward a point vortex. We do not believe that

 is the critical factor in vortex concentration because
(a) the time scale associated with 
 (200 s), as we shall
see, is longer than the other time scales involved, and
(b) it is not the whole vorticity band that is converging
toward the vortex, but the segment of the band that is
physically rotating.

5. Models of concentration

We now briefly review some pertinent analytical
models of vorticity dynamics in the literature. We begin
with the classic two-dimensional model of barotropic
instability, which we believe to be relevant to the evo-
lution of the vorticity band simulated by RAMS until
approximately 3360 s. To understand the later time
evolution, we next summarize present models of the
evolution of vorticity patches in uniform two-
dimensional strain flows that need not be nondivergent.
For this purpose we will focus mainly on the studies of
LC84, N84a, and N84b.

a. Barotropic instability and nonlinear evolution

Consider inviscid, two-dimensional nondivergent
flow. It is well known that a vortex sheet in such con-
ditions is linearly unstable with respect to infinitesimal
perturbations of all wavelengths. (Helmholtz 1868;
Kelvin 1871; Lamb 1932; Batchelor 1967). A band of
constant vorticity with finite width was shown by Ray-
leigh (1880) to be stable to short-wavelength infinitesi-
mal disturbances, but unstable to disturbances with
wavelengths greater than 4.9�x, where �x is the width
of the band of vorticity. There is also a wavelength of
maximum instability, at 7.9�x, with an e-folding growth
time of 5/�z. This instability can be interpreted as the

superposition of two phase-locked Rossby waves gen-
erated along the vorticity discontinuities on each edge
of the vortex band (e.g., Hoskins et al. 1985; Guinn and
Schubert 1993).

As the instability evolves, circulation and vorticity
(for the finite-width case) tend to concentrate into dis-
crete centers on segments of the wave tilted upshear
with respect to the mean tangential wind (Rosenhead
1931; Batchelor 1967; Corcos and Sherman 1984). This
can be related to the second-order modes in the hori-
zontal part of the circulation budget (Fig. 9). The mean
tangential shear represents a shearing deformation in-
clined at 45° to the vorticity band. A slight rotation of
a band segment toward the axis of contraction (dilata-
tion) projects the band vorticity onto the axis of con-
traction (dilatation), allowing circulation to increase
(decrease) within the circular region (Orr 1907;
Lindzen 1988). Once nonuniformities develop, the re-
gion around a vorticity maximum tends to undergo self-
induced rotation (Kirchhoff 1876), which further pro-
jects it toward the axis of contraction. Eventually the
vorticity band and associated deformation break down,
and vorticity not incorporated within centers is left be-
hind in trailing spirals, which can be described as vortex
axisymmetrization serving to propagate nonaxisymmet-
ric modes away from the core (Melander et al. 1987;
Montgomery and Kallenbach 1997). Ultimately pairs of
adjacent vortices can interact and merge (Corcos and
Sherman 1984; Melander et al. 1988; Lee and Wilhelm-
son 1997a).

FIG. 9. Depiction of the increase of circulation caused by a
rotated vorticity segment (shaded) with respect to an unbounded
one-dimensional vorticity band (dashed). Block arrows denote
the deformation field associated with the vorticity band; solid
arrows the velocity field. The circular region denotes a sample
region where circulation is increasing.
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The concentration of a vorticity band by a large-scale
irrotational straining field can also be explained using
the orientation of the vorticity band to the large-scale
axis of contraction, but with important differences. A
stationary straining field will advect vorticity such that
ultimately the largest values of vorticity will accumulate
along the axis of dilatation. Circulation is then diluted
unless the velocity field is also horizontally convergent.
Any subsequent rotation of the band away from this
axis of dilatation increases the vorticity projection onto
the axis of contraction, providing an effective focusing
mechanism. However, the large-scale strain resists such
rotation.

Corcos and Lin (1984) and LC84 modeled the evo-
lution of vorticity patches in nearly plane strain, with
the axis of dilatation along their major axes. The
patches resembled finite-length versions of the Burgers
vortex layer, in that convergence of vorticity was bal-
anced by viscous diffusion; however, being finite, the
patches were susceptible to self-induced rotation. The
authors observed two modes of evolution. First, define
the maximum tangential velocity (MTV) as �m/2, where
�m is the maximum circulation density of the vorticity
patch (see Fig. 10). Also define the characteristic con-
vergent velocity (CCV) as �xc, where xc � (�/�)1/2 is the
characteristic width scale, at which point the vorticity
has a value of e�1/2 times the maximum. LC84 found
that when MTV � CCV, the patches rotated slightly,
then gradually relaxed toward the axis of dilatation as
their vorticity diffused away. However, for MTV �

CCV, diffusion was unable to prevent the concentra-
tion of vorticity by plane convergence. The vorticity
concentration increased the degree of self-rotation, fur-
ther increasing the vorticity concentration and creating

a positive feedback. The end state was the concentra-
tion of most of the circulation into a series of nearly-
circular Burgers vortices; the remaining circulation
formed vorticity filaments that diffused away. Figure 11
shows three stages in the evolution of counter-rotating
vortices.

When concentrated vortices formed, two further re-
gimes of behavior could be identified, based on analy-
ses of N84a, N84b, and LC84. The relevant parameters
are the plane convergence �, and the lengthwise spatial
derivative of the circulation density, �y. (LC84 uses the
parameter �*, proportional to �y/�.) N84a first consid-
ered the inviscid but strained limit, corresponding to
CCV � 0 but � and MTV � �(y)/2 nonzero. The in-

FIG. 10. Schematic showing definitions of MTV and CCV, as
described in text.

FIG. 11. Collapse of a pair of counter-rotating vortices in a
viscous flow under plane convergence, from Lin and Corcos
(1984). Contours indicate vertical vorticity. Each successive figure
(top to bottom) represents a time increment of 1/(2�) in our no-
tation, where � is the plane convergence.
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stability criterion MTV � CCV is automatically satis-
fied, as in the unstrained vortex sheet. For � � �y, N84a
showed that under general conditions any distribution
of � around a local maximum collapses into a Burgers
vortex (which since xc � 0 is a point vortex), because of
an upgradient � flux. Furthermore, for the case of long
but finite vortex sheet of initial circulation density �(y)
� �m0(1 � y2/a2

0)1/2, he showed that a point vortex
would be achieved in a finite time, a2

0�/�2
m0. Note, how-

ever, that the collapse time increases with the conver-
gence; for large � the vorticity patch never deviates far
from the axis of dilatation. We will refer to � � �y as
the condensing regime. N84a proved that in the con-
densing regime MTV � CCV is the precise require-
ment for the conversion of the vortex layer segments
into concentrated vortices. Only circulation density in
excess of the critical value is incorporated into the final
vortex, with the remainder lost to diffusion.

The analysis for � � �y is not as general but can be
handled by assuming that the vorticity patches are el-
lipses of constant vorticity, as assumed in LC84. The
inviscid behavior of such patches in a general straining
field was found by N84b. If we assume that the patches
are infinitesimally narrow, MTV � CCV, and we ex-
pect collapse to occur. For a narrow vorticity patch in
uniform plane convergence ��xx̂, the appropriate
equations are (N84b)

da

dt
� �a� sin2� �13�

d�

dt
�

	m0a0

2a2 �
�

2
sin2�, �14�

where a is the semimajor axis length of the ellipse, 	 is
the angle of the semimajor axis to the y axis, a0 is the
initial semimajor axis length, and �m0 is the initial maxi-
mum circulation density about the y axis. The first term
on the rhs of (14) represents the vortex patch self-
induced rotation, while the last term represents the re-
sistance to rotation by the straining flow. The noncon-
densing regime implies that � � �m0/a0. [In the notation
of LC84, it can be shown that this corresponds to �* �

1/(4�).] In the noncondensing regime, since a � a0, the
last term in (14) can never balance the self-induced
rotation term. The rotation rate oscillates about the
value �m0a0/(2a2) during one revolution. The cycle-
averaged rotation rate is inversely proportional to the
square of a, which rapidly decreases from (13). After
several time scales of order 2/�, a should be small, and
a concentrated vortex should be formed. (Note that Fig.
11 is in the noncondensing regime.) For t � 2/� the
evolution resembles that of the nonlinear nondivergent
case.

Incidentally, in the condensing regime it is straight-
forward to use (13) and (14) to show that a compact
vortex forms by time a2

0�/�2
m0. The derivation is found

in N84a and LC84, but the details are outlined in ap-
pendix A for reference. The derivation shows that the
condensing regime collapse occurs within approxi-
mately one-quarter rotation of the vorticity patch.

Because the effective collapse times for the two re-
gimes exhibit opposite dependencies on � (see Table
3), we can surmise that there is some � between the
condensing and noncondensing regimes for which the
“effective collapse time” is minimized for a given �y.
This intermediate state is characterized by the ellipse
rotating between approximately one-quarter and one
revolution before the final state.

Finally, we note that in the infinitesimally narrow
noncondensing regime the ellipses will continually
shrink and rotate at ever-increasing cycle-averaged
rates in the presence of axial strain or plane conver-
gence. However, if we assume that the ellipse has a
small but nonzero semiminor axis b, N84b predicts that
the end state is one with a constant aspect ratio a/b near
but greater than unity. It can also be shown (see N84b)
that rotations for �/2 � 	 � 0 are resisted more by the
strain as the aspect ratio approaches unity. Thus we
expect collapse eventually to produce a near-circular
ellipse that may stagnate counterclockwise from the
axis of dilatation. This is supported by Moffat et al.
(1994), who show that in the small viscosity limit a vor-
tex in nonaxisymmetric convergence approaches circu-
larity, with the major axis fixed at �/4.

b. Linear instability of Burgers vortex layer

The preceding overview suggests that even the infi-
nitely long Burgers vortex layer may be linearly un-
stable to long wavelengths. This was confirmed numeri-
cally by LC84 and analytically by Beronov and Kida
(1996). It was shown that MTV � CCV is the necessary
condition for instability at all wavelengths and is a suf-
ficient condition for wavelengths exceeding a short-
wave cutoff. Since this condition is equivalent to
(MTV)(xc /�) � 1, it can be considered a Reynolds num-
ber criterion. The instability resembles that of the Ray-

TABLE 3. Description of condensing and noncondensing regimes
of vortex formation.

Condensing Noncondensing

Definition � � �y � � �y

Vortex formation criterion MTV � CCV MTV � CCV
Inviscid collapse time Near (a2

0�/�2
m0) O((2/�))

Inviscid angular rotation Small (�1⁄4 rev.) Several rotations
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leigh constant vorticity band in the presence of a short-
wave cutoff and a wavelength of maximum instability
proportional to the characteristic width of the band. In
fact, according to LC84, the most unstable wavelength
at large Reynolds number is very close to 7.9�1/2, where
�1/2 � 2(2 ln2)1/2 xc is the half-width of the vorticity
band.

The results of LC84 show that as the Reynolds num-
ber is decreased toward neutrality, the most unstable
wavelength increases slightly (8.8�1/2 at Re � 5). The
largest change is in the growth rate of the most unstable
mode, decreasing from �0.18�/�1/2 at large Reynolds
number (cf. �0.20�/�x for the Rayleigh band) to
�0.07�/�1/2 at Re � 5.

Once linear instability begins, upshear wave seg-
ments will tend to have concentrated circulation as de-
scribed above. We can estimate whether the further
evolution follows the condensing or noncondensing re-
gime. To do this we assume that �y � k�0, where �0 is
the basic-state circulation density, k is the wavenumber
of the most unstable mode for the Burgers vortex layer,
and �y is the derivative of �0 in the lengthwise direc-
tion. Substitution gives

k	0

�
�

	0

�

2�

7.9�1
2
�

	0

�

2�

�7.9��2��2 ln2�1
2 ��

��1
2

� 0.34
	0

����1
2 . �15�

Since instability requires �0/2 � (��)1/2, the last fraction
on the rhs must be �2 for instability. It follows that a
nearly neutrally stable Burgers layer is also near the
condensing/noncondensing boundary. Near neutrality,
diffusion is strong and may prevent most of the circu-
lation from entering the vortex. If the Reynolds num-
ber is increased, the circulation lost to diffusion is de-
creased, but the noncondensing regime is entered. So
we would expect the behavior of the unstable Burgers
layer to resemble that of the nondivergent vorticity
band, with somewhat faster formation of vorticity cen-
ters. The fastest nonlinear vorticity convergence may
occur at lower Reynolds numbers provided that the
number is not so low that all of the circulation is lost
(e.g., LC84).

6. Vortex layer evolution in RAMS

Since largely plane-convergent flow also appears in
the RAMS simulation, it is tempting to apply the N84a,
N84b, and LC84 models. If we compare the RAMS
vorticity structure at 3360 (Fig. 12), 3420 (Fig. 13), and
3600 s (Fig. 2), we see a close correspondence to those
in the figure from LC84 (their Fig. 11). However, one

problem with applying the Burgers vortex layer model
to the RAMS-simulated vorticity band is the absence of
an initial steady state. Specifically, the convergence of
vorticity significantly exceeds the viscous dissipation, so
the band is still contracting toward the axis of dilata-
tion. Analytically, it can be shown that the long-term
end state for a vorticity patch undergoing plane strain is
a Burgers vortex layer with characteristic length scale
(�/�)1/2 (Kambe 1983; Beronov 1997). For the RAMS
simulation � � 108 m2 s�1, and when coupled with � �
2 � 10�2 s�1 gives a steady-state length scale of 73 m,
less than one horizontal grid spacing even of the fine
grid. Thus, it seems questionable to apply analytical
results based on this length scale.

One possibility is to model the vorticity strip as a
Rayleigh constant vorticity band within large-scale ir-
rotational plane convergent flow. While � remains con-
stant during convergence, the vorticity increases and
the most unstable wavelength decreases. We assume
that linearly unstable wavelengths will become appar-
ent when, at the vorticity interface, the flow speed in-
duced by the Rossby wave at the opposite interface
becomes on the order of the speed of the plane con-
vergent flow. The former is equivalent to (�/2k�x)e�k�x

(Guinn and Schubert 1993), which has a value of
�0.57�/2 for the most unstable wavelength, regardless
of bandwidth. The plane convergence has magnitude

FIG. 12. Same as in Fig. 1, but at 3360 s.
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��x/2. Thus the most unstable mode should become
apparent when the vorticity bandwidth decreases to

�x � 0.57	
�. �16�

Note that the instability criterion MTV � CCV is
equivalent to 2xc � 1.00�/�, so the unsteady vortex
layer criterion has the same form, if the characteristic
length scale is defined not in terms of viscosity but in
terms of the actual scale width of the vorticity band at
a given time. For the case of the unsteady vorticity
band, “stability” corresponds to uniform convergence
of the band toward the axis of dilatation, while during
“instability” nonuniformities in u along the lengthwise
direction become important. The nonuniformities in u
imply the rotation of vorticity segments from the y axis,
triggering vortex concentration. Since CCV is continu-
ally decreasing, stability does not imply stability for all
time, but only until the decreasing CCV makes the
band unstable. The other important difference from the
steady-state Burgers vortex layer is that diffusion is not
necessarily significant when wave motion appears, so
the concentration of virtually all the circulation from a
vortex band into a condensed vortex is possible. (Of
course, viscosity prevents the total collapse to a point
vortex and determines the final scale.)

For the RAMS-simulated vorticity band we use � �
� � 
 � 2.0 � 10�2 s�1, and with � � 18 m s�1, we get

a threshold of �x � 540 m and with a corresponding
most unstable wavelength of 4300 m. This is consistent
with the fact that when the band has a width of approxi-
mately 600 m at 3300 s the wavelike perturbation is not
yet apparent. At 3360 s (Fig. 12), most of the vorticity
has narrowed to a region 400–500 m across, and waves
have indeed become apparent. Although the full wave-
length is not apparent in Fig. 12, probably because suf-
ficient vorticity does not extend far enough, the half-
wavelength is approximately 1800 m, which is reason-
able, though slightly short. This suggests another reason
why this particular wavelength is selected, namely, the
vorticity band is not long enough for the realization of
longer wavelengths.

We can estimate the final circulation and tangential
velocity of the Burgers vortex resulting from the
steady-state vortex layer. Using the expressions 
max �
0.72�/2�rmax with rmax � 1.12(2�/�)1/2 (Davies-Jones
1986), it can be shown that

�max � 0.072���

��1
2

. �17�

Keeping circulation fixed, the Burgers vortex in the in-
viscid strained limit (i.e., �/� approaching zero) can
achieve unbounded tangential velocities, if energeti-
cally permitted. (By contrast, for the Burgers vortex
layer the largest tangential speed, MTV � �/2, is found
in the far field and is independent of convergence and
viscosity.) However, the most unstable wavelength ap-
proaches zero in the inviscid strained limit; thus the
circulation drawn into the vortex will in fact decrease
along with �/�. LC84 assume that � over a full wave-
length � eventually enters the final vortex, due to non-
linear advection into an upshear-tilted wave segment.
Thus the final vortex circulation will be 7.9��1/2 � 18.6�
� (�/�)1/2. (This shows incidentally that the vortices
that develop have vortex Reynolds numbers � �/� of at
least �37.2.) Substitution into (17) yields 
max � 1.3�.
We see that for moderate Reynolds numbers the tan-
gential velocity may increase by a factor of between 2
and 3 during the collapse process; for low Reynolds
numbers the increase will be less because of viscous
dissipation.

Larger velocity increases are possible for the collapse
of the unsteady converging band. This is because the
�1/2 in the wavelength calculation should be based on
the actual characteristic width of the vorticity band,
which exceeds the steady band value of (�/�)1/2. The
unsteady maximum velocity is given by

�max 	 1.3	xc��

��1
2

, �18�

FIG. 13. Same as in Fig. 1, but at 3420 s, and for inset of
domain.
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where xc is the actual vorticity band characteristic width
at the start of instability. For the RAMS simulation
xc � 225 m while (�/�)1/2 � 73 m, so theoretically a final
tangential velocity of 72 m s�1 is possible. As stated
previously, insufficient grid resolution prevents the vor-
ticity from concentrating to that extent. In fact, as can
be seen in Fig. 14, the final vortex has rmax � 300 m; for
a Burgers vortex this would correspond to a character-
istic radius of 190 m, essentially the same as the initial
vorticity band half-width. So we would expect the
steady-state result of 
max � 1.3� (since viscosity is
small) to hold. We see from Fig. 14 that the maximum
tangential velocity1 of 25 m s�1 is in excellent agree-
ment with this prediction.

If we assume that in general �1/2 � 2xc � 0.57�/� at
the onset of instability for the unsteady converging vor-
ticity band, substituting into the above relations gives a
final vortex circulation of

� � 4.5
	2

�
. �19�

The closed RAMS-simulated vortex can be seen to
have a radius of approximately 600 m (Fig. 2), with 
� �
20 m s�1 (Fig. 14) at this distance. This circulation of 7.5
� 104 m2 s�1 again compares (suspiciously) well with
the predicted 7.3 � 104 m2 s�1 from (19). Equation (19)
indicates that as the plane convergence � increases, the
final vortex circulation decreases, given the same circu-
lation density. We note that, of the few studies directly
comparing tornadic supercells to nontornadic super-
cells, Rasmussen and Blanchard (1998) found that high
lifting condensation levels (LCLs) were one of the best
predictors of the absence of supercell tornadoes, and
Markowski et al. (2002) found that strongly negatively
buoyant rear flank downdrafts were similarly inhibitive.
Since high LCLs are associated with negatively buoyant
downdrafts, and since strongly negative buoyancy is as-
sociated with large hydrostatic pressure gradients, the
implication is that strong convergence along the cold
pool boundary does not favor the formation of signifi-
cant tornadoes. Despite the importance we attach to
the role of plane convergence in our study, our results
could be consistent with the observations if significant
tornadoes are associated with larger values of circula-
tion. Small but nonzero values of plane convergence
maximize the circulation drawn into the final vortex, if
(a) sufficient time and (b) a sufficient lengthwise extent
of � are present.

7. Discussion

While undoubtedly there are differences between the
above conceptual models and the processes in both
modeled and observed tornadoes/mesocyclones, we
would like to point out some qualitative features that
we feel are relevant. First, extremely close-range obser-
vations of a tornado by Bluestein et al. (2003a) revealed
an elliptical structure to the eye, but one that did not
appear to rotate. They speculated that deformation was
the likely reason for these observations. Bluestein et al.
(2003b) found that tornadogenesis was associated with
the arrival of a jet of convergence to a cold pool bound-
ary that possessed vortices at a variety of scales.
Though the observations are complex, they certainly
support the idea that the interaction of nonaxisymmet-
ric vorticity bands and anisotropic convergence in the
horizontal plane are important.

Another aspect of the Burgers vortex layer to Burg-
ers vortex transition is the qualitative change in pres-
sure distribution required. For the layer the pressure is
independent of the vorticity and reaches a maximum
where the vorticity is a maximum, along the gust front
(see Part I). In contrast, the Burgers vortex possesses a
ring of high pressure surrounding a pressure minimum
that is proportional to the square of the circulation,
provided that �/� � 4�. We have seen that the insta-
bility criterion ensures that the vortex Reynolds num-

1 Because of the translational velocity, the highest ground-
relative vortex speeds are over 40 m s�1 in the model.

FIG. 14. Vortex-relative speed at 3600 s on grid 2. Vortex trans-
lational velocity is 19 and �6 m s�1 and was found by removing
the first-order modes from the velocity pattern of the vortex.
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ber is in this range. Fujita (1958) found the presence of
a high pressure ring encircling a tornado with a radius
of a few kilometers. In the simulation such a transition
occurs between Fig. 3 and Fig. 4.

Both Burgers vorticity distributions have the same
upper boundary conditions for the upward pressure
gradient force and w (horizontally uniform and increas-
ing linearly with height). Since neither can be main-
tained to infinity, we must interpret them as conditions
that at some level are maintained by the storm system
aloft (e.g., Fiedler 1995). We note that the intense vor-
tices of Wicker and Wilhelmson (1995) and Grasso and
Cotton (1995) both were accompanied by strong verti-
cal motion, possibly dynamically induced, near cloud
base, and we speculate that this vertical motion may
explain why their vortices, as well as many actual tor-
nadoes, are stronger than ours. Though we have em-
phasized that the vortex concentration described here
occurs independently of conditions aloft, if the result-
ant pressure deficit exceeds that which would be con-
sistent with the “thermodynamic speed limit” of the
storm (Kessler 1970; Snow and Pauley 1984; Fiedler
and Rotunno 1986; Walko 1988), then a downdraft will
be induced that will eventually dissipate the vortex.
That being stated, for a period of time the thermody-
namic speed limit may not be a direct influence on the
low-level dynamics, because the descent of the down-
draft is not instantaneous (Fiedler 1998), and the down-
draft’s own translational motion may delay its interac-
tion with the vortex center (Part I).

We can compare our results with those of Lee and
Wilhelmson (1997a,b), who modeled the formation of
nonsupercell tornadoes. These tornadoes developed
from larger and weaker mesocyclones by convectively
driven and frictionally driven convergence (Brady and
Szoke 1989; Wakimoto and Wilson 1989). The parent
mesocyclones developed from instabilities along a one-
dimensional gust front with similar values of circulation
density (15 m s�1) and grid spacing (100 m) to ours.
Because they used periodic boundary conditions in the
lengthwise direction, and because the initial perturba-
tions were attributed to “lobe-and-cleft” instability at
the gust front head (Simpson 1972), the wavelengths
that developed do not correspond to ours and are in
fact considerably smaller (Fig. 15). However, the sub-
sequent formation of the mesocyclones was attributed
to conventional two-dimensional vorticity dynamics
(Lee and Wilhelmson 1997a).

The Lee and Wilhelmson (1997a) simulation appears
to possess smaller convergence due to the gust front,
though frictional convergence generates regions of
comparable convergence. From their figures of vertical
velocity and stretching terms, a mean (nonfrictionally

induced) convergence of 6 � 10�3 s�1 can be estimated.
At 900 s, the value of �y for the nascent vortices is at
least 8 m s�1/800 m � 10�2 s�1. So we would expect the
evolution to fall into the noncondensing regime, more
resembling nondivergent vorticity dynamics than ours.
This does in fact appear to be the case. The circulation
achieved by their sample vortex (3.2 � 104 m2 s�1) is
much less than ours, because of the smaller initial wave-
length; the circulation later increases because of step-
wise mergers. Though the plane convergence is smaller,
the distance from which circulation is drawn is also
smaller than in our analysis, so the time of initial vortex
concentration is only slightly longer than in our simu-
lation (about 400 s from appearance of instability to the
time of the most intense premerger vortices).

We emphasize that we are describing an idealized
supercell simulation with idealized models. We have
not taken into account, for instance, the possibility of a
nonconstant large-scale irrotational field, which may be
quite important (e.g., Bluestein et al. 2003b). We have
not considered turbulence, using only a constant-eddy
coefficient model. We have consciously tried to recast the
Burgers vortex dynamics from the parameters (�, �, �)
to (�, �, xc) whenever possible in order to generalize
the results. We have not taken the frictional effects of
the lower boundary into account, undoubtedly critical
for the final spinup of the tornado (Rotunno 1979;
Howells et al. 1988; Nolan and Farrell 1999), and we
have seen above how friction may affect instability
along the gust front. However, we note that no-slip

FIG. 15. Development of mesocyclones through barotropic in-
teraction along a shear line. From Lee and Wilhelmson (1997a).
Each panel represents a progression of 180 s, starting at 720 s of
simulation time. Vorticity is contoured every 0.02 s�1, beginning
with 0.005 s�1.
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axisymmetric vortex models that generate the intense
near-surface vertical motion characteristic of tornadoes
(e.g., Burggraf et al. 1971; Rotunno 1980; Howells et al.
1988; Fiedler and Rotunno 1986; Nolan and Farrell
1999) generally include a concentrated region of vor-
ticity surrounded by a large region of nearly irrotational
flow. The process described in this study can help gen-
erate these conditions, and so may help generate the
“parent” tornado vortex as described in Rotunno
(1986).

We also are not considering the influence of meso-
scale horizontal variability, which has been found to be
often associated with tornadogenesis (Markowski et al.
1998; Rasmussen et al. 2000). Both Grasso (1996) and
Finley (1997) generated much more intense tornadic
vortices in horizontally heterogeneous nested-grid
simulations. This suggests that mesoscale wind fields
can serve to concentrate more circulation into a region
than is possible by the instability based method exam-
ined here, as well as provide an extended source of �.

8. Conclusions

It has been shown using Fourier decomposition that
an intense model vortex that developed in an idealized
RAMS simulation did not become concentrated due to
an increase in the axisymmetric convergence, but rather
by the creation of a better correlation between radial
inflow and vertical vorticity, most apparent in the sec-
ond-order modes. Although vorticity stretching is
strong and primarily responsible for increasing the vor-
ticity magnitude, the fundamental dynamics of its con-
centration into a closed vortex may be described in two
dimensions. Qualitatively and quantitatively, the pro-
cess is best described as intermediate between one in
which vorticity self-advection is predominant, and one
in which the advection by the irrotational strain is dom-
inant. Heuristic arguments were used to show that a
narrow vorticity band converging toward an axis should
break down and evolve according to this intermediate
state, which minimizes the time of vorticity concentra-
tion for a given circulation density gradient. Since dif-
fusion is insufficient to balance plane convergence, cir-
culation diffusion is less than in the steady-state vortic-
ity band, and the final vortex circulation is greater.
Furthermore, the fact that scale contraction continues
while the vorticity is becoming locally concentrated cre-
ates the potential of larger tangential velocities than for
the breakdown of a preexistent steady-state vorticity
band, although our model resolution was insufficient to
capture this effect. Since the magnitude of convergence
along meteorological gust fronts is often comparable to
that of vorticity, these results should be relevant to me-

socyclone and tornado formation. However, the proper
vertical forcing from the parent storm appears to be
necessary to achieve the extreme wind speeds of sig-
nificant tornadoes.
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APPENDIX

Time Scale for Vortex Formation in Condensing
Regime

The equations governing the motion of an infinitesi-
mally narrow elliptical patch of uniform vorticity within
an irrotational straining field V � ��xx̂ are (Neu
1984b)

da

dt
� �a� sin2� �A1�

d�

dt
�

	m0a0

2a2 �
�

2
sin2�. �A2�

If we assume that 	 is small, then sin 2	 � 2	, and the
equilibrium angle at which the self-rotation and strain
in (A2) are in balance is

�eq �
	m0a0

2�a2 . �A3�

In the condensing regime �m0/a0 � �, so initially 	eq is
indeed a small angle. The evolution described by (A2)
at small angles is one in which all initial states approach
	eq with a time scale of 1/�. The evolution described
by (A1) is one of decay in a with a time scale of 1/
(� sin2	). The latter is a much larger quantity at small
angles, and so it is possible to assume that 	 � 	eq

during the evolution of (A1). Performing this substitu-
tion gives

da

dt
� �a�

	m0
2 a0

2

4�2a4 , �A4�

where the small angle approximation has been used.
This differential equation is easily shown to have the
following solution:
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a4 � a0
4 � �

	m0
2 a0

2

�
t. �A5�

From this equation, it follows that at the finite time t �
�a2

0/�2
m0, a becomes zero. While a is compressed by the

strain, the equilibrium angle increases, causing the el-
lipse to rotate. Rotation toward the axis of contraction
causes a to be compressed at an ever-increasing rate.

Eventually, however, the scaling breaks down, be-
cause 	eq is no longer small. Whereas 	 continues to
increase, the factor of sin2	 on the rhs of (A1) never
exceeds unity. So in the exact equation system the point
vortex is not achieved in a finite time. Instead, we note
that for 	 � 0.5, sin(2	)/2 � 0.42 � 	, but 1/(� sin2	)
� 1/(0.23�) � 1/�, so (A4) should still be approxi-
mately valid for 	 � 0.5. For 	eq � 0.5, we have a �
(�m0a0/�)0.5, a small quantity in the condensing regime.
Using (A5), the time required for this degree of col-
lapse is

t �
�a0

2

	m0
2 �1 �

	m0
2

�2a0
2�, �A6�

which in the condensing regime is little different from
�a2

0/�2
m0. The conclusion is that for a condensing regime,

even though the point vortex is not achieved in finite
time for the exact system (A1) and (A2), it can still be
assumed that most of the collapse has occurred by time
�a2

0/�2
m0, and slightly before this time the semimajor

axis has only rotated 29°. By one-quarter of a revolu-
tion, which is the orientation that maximizes the rate of
a contraction, it may be assumed that a concentrated
vortex has been formed.
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